Cognitive Radio (CR) is a promising solution that enhances spectrum utilization by allowing an unlicensed or Secondary User (SU) to access licensed bands in a such way that its imposed interference on a license holder Primary User (PU) is limited, and hence fills the spectrum holes in time and/or frequency domains. Resource allocation, which involves scheduling of available time and transmit power, represents a crucial problem for the performance evaluation of CR systems. In this dissertation, we study the spectral efficiency maximization problem in an opportunistic CR system. Specifically, in the first part of the dissertation, we consider an opportunistic CR system where the SU transmitter (SUtx) is equipped to a Reconfigurable Antenna (RA). RA, with the capabilities of dynamically modifying their characteristics can improve the spectral efficiency, via beam steering and utilizing the spectrum white spaces in spatial (angular) domain. In our opportunistic CR system, SUtx relies on the beam steering capability of RA to detect the direction of PU's activity and also to select the strongest beam for data transmission to SU receiver (SUrx). We study the combined effects of spectrum sensing error and channel training error as well as the beam detection error and beam selection error on the achievable rates of an opportunistic CR system with a RA at SUtx. We also find the best duration for spectrum sensing and channel training as well as the best transmit power at SUtx such that the throughput of our CR system is maximized subject to the Average Transmit Power Constraint (ATPC) and Average Interference Constraint (AIC). In the second part of the dissertation, we consider an opportunistic Energy Harvesting (EH)-enabled CR network, consisting of multiple SUs and an Access Point (AP), that can access a wideband spectrum licensed to a primary network. Assuming that each SU is equipped with a finite size rechargeable battery, we study how the achievable sum-rate of SUs is impacted by the combined effects of spectrum sensing error and imperfect Channel State Information (CSI) of SUs–AP links. We also design an energy management strategy that maximizes the achievable sum-rate of SUs, subject to a constraint on the average interference that SUs can impose on the PU.


If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu.

Graduation Date





Vosoughi, Azadeh


Doctor of Philosophy (Ph.D.)


College of Engineering and Computer Science


Electrical and Computer Engineering

Degree Program

Electrical Engineering




CFE0009135; DP0026468





Release Date

February 2022

Length of Campus-only Access


Access Status

Doctoral Dissertation (Open Access)

Restricted to the UCF community until February 2022; it will then be open access.