Abstract

Emerging non-volatile memories (NVMs), such as phase change memory (PCM), spin-transfer torque RAM (STT-RAM) and resistive RAM (ReRAM), have dual memory-storage characteristics and, therefore, are strong candidates to replace or augment current DRAM and secondary storage devices. The newly released Intel 3D XPoint persistent memory and Optane SSD series have shown promising features. However, when these new devices are exposed to events such as power loss, many issues arise when data recovery is expected. In this dissertation, I devised multiple schemes to enable secure data recovery for emerging NVM technologies when memory encryption is used. With the data-remanence feature of NVMs, physical attacks become easier; hence, emerging NVMs are typically paired with encryption. In particular, counter-mode encryption is commonly used due to its performance and security advantages over other schemes (e.g., electronic codebook encryption). However, enabling data recovery in power failure events requires the recovery of security metadata associated with data blocks. Naively writing security metadata updates along with data for each operation can further exacerbate the write endurance problem of NVMs as they have limited write endurance and very slow write operations. Therefore, it is necessary to enable the recovery of data and security metadata (encryption counters) but without incurring a significant number of writes. The first work of this dissertation presents an explanation of Osiris, a novel mechanism that repurposes error correcting code (ECC) co-located with data to enable recovery of encryption counters by additionally serving as a sanity-check for encryption counters used. Thus, by using a stop-loss mechanism with a limited number of trials, ECC can be used to identify which encryption counter that was used most recently to encrypt the data and, hence, allow correct decryption and recovery. The first work of this dissertation explores how different stop-loss parameters along with optimizations of Osiris can potentially reduce the number of writes. Overall, Osiris enables the recovery of encryption counters while achieving better performance and fewer writes than a conventional write-back caching scheme of encryption counters, which lacks the ability to recover encryption counters. Later, in the second work, Osiris implementation is expanded to work with different counter-mode memory encryption schemes, where we use an epoch-based approach to periodically persist updated counters. Later, when a crash occurs, we can recover counters through test-and-verification to identify the correct counter within the size of an epoch for counter recovery. Our proposed scheme, Osiris-Global, incurs minimal performance overheads and write overheads in enabling the recovery of encryption counters. In summary, the findings of the present PhD work enable the recovery of secure NVM systems and, hence, allows persistent applications to leverage the persistency features of NVMs. Meanwhile, it also minimizes the number of writes required in meeting this crash consistency requirement of secure NVM systems.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2020

Semester

Spring

Advisor

Awad, Amro

Degree

Doctor of Philosophy (Ph.D.)

College

College of Engineering and Computer Science

Department

Electrical and Computer Engineering

Degree Program

Computer Engineering

Format

application/pdf

Identifier

CFE0008060

URL

http://purl.fcla.edu/fcla/etd/CFE0008060

Language

English

Release Date

May 2020

Length of Campus-only Access

None

Access Status

Doctoral Dissertation (Open Access)

Share

COinS