Increased urbanization, population growth, and economic development within the U.S. have led to an increased demand for freight travel to meet the needs of individuals and businesses. Consequently, freight transportation has grown significantly over time and has expanded beyond the capacity of infrastructure, which has caused new challenges in many regions. To maintain quality of life and enhance public safety, more effort must be dedicated to investigating and planning in the area of traffic management and to assessing the impact of trucks on highway systems. Traffic diversion is an effective strategy to reduce the impact of incident-induced congestion, but alternative routes for truck traffic must be carefully selected based on a route's restrictions on the size and weight of commercial vehicles, route's operational characteristics, and safety considerations. This study presents a diversion decision methodology that integrates the network analyst tool package of the ArcGIS platform with regression analysis to determine optimal alternative routes for trucks under nonrecurrent delay conditions. When an incident occurs on a limited-access road, the diversion algorithm can be initiated. The algorithm is embedded with an incident clearance prediction model that estimates travel time on the current route based on a number of factors including incident severity; capacity reduction; number of lanes closed; type of incident; traffic characteristics; temporal characteristics; responders; and reporting, response, and clearance times. If travel time is expected to increase because of the event, a truck alternative route selection module is activated. This module evaluates available routes for diversion based on predefined criteria including roadway characteristics (number of lanes and lane width), heavy vehicle restrictions (vertical clearance, bridge efficiency ranking, bridge design load, and span limitations), traffic conditions (level of service and speed limit), and neighborhood impact (proximity to schools and hospitals and the intensity of commercial and residential development). If any available alternative routes reduce travel time, the trucks are provided with a diversion strategy. The proposed decision-making tool can assist transportation planners in making truck diversion decisions based on observed conditions. The results of a simulation and a feasibility analysis indicate that the tool can improve the safety and efficiency of the overall traffic network.


If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date





Oloufa, Amr


Doctor of Philosophy (Ph.D.)


College of Engineering and Computer Science


Civil, Environmental, and Construction Engineering

Degree Program

Civil Engineering




CFE0008061; DP0023200





Release Date

May 2020

Length of Campus-only Access


Access Status

Doctoral Dissertation (Open Access)