Abstract

Micro-scale light emitting diode (micro-LED) is a potentially disruptive display technology because of its outstanding features such as high dynamic range, good sunlight readability, long lifetime, low power consumption, and wide color gamut. To achieve full-color displays, three approaches are commonly used: 1) to assemble individual RGB micro-LED pixels from semiconductor wafers to the same driving backplane through pick-and-place approach, which is referred to as mass transfer process; 2) to utilize monochromatic blue micro-LED with a color conversion film to obtain a white source first, and then employ color filters to form RGB pixels, and 3) to use blue or ultraviolet (UV) micro-LEDs to pump pixelated quantum dots (QDs). This dissertation is devoted to investigating and improving optical performance of these three types of micro-LED displays from device design viewpoints. For RGB micro-LED display, angular color shift may become visually noticeable due to mismatched angular distributions between AlGaInP-based red micro-LED and InGaN-based blue/green counterparts. Based on our simulations and experiments, we find that the mismatched angular distributions are caused by sidewall emission from RGB micro-LEDs. To address this issue, we propose a device structure with top black matrix and taper angle in micro-LEDs, which greatly suppresses the color shift while keeping a reasonably high light extraction efficiency. These findings will shed new light to guide future micro-LED display designs. For white micro-LEDs, the color filters would absorb 2/3 of the outgoing light, which increases power consumption. In addition, color crosstalk would occur due to scattering of the color conversion layer. With funnel-tube array and reflective coating on its inner surface, the crosstalk is eliminated and the optical efficiency is enhanced by ~3X. For quantum dot-converted micro-LED display, its ambient contrast ratio degrades because the top QD converter can be excited by the ambient light. To solve this issue, we build a verified simulation model to quantitatively analyze the ambient reflection of quantum dot-converted micro-LED system and improve its ambient contrast ratio with a top color filter layer.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu.

Graduation Date

2020

Semester

Summer

Advisor

Wu, Shintson

Degree

Doctor of Philosophy (Ph.D.)

College

College of Optics and Photonics

Department

Optics and Photonics

Degree Program

Optics and Photonics

Format

application/pdf

Identifier

CFE0008171; DP0023514

URL

https://purls.library.ucf.edu/go/DP0023514

Language

English

Release Date

August 2020

Length of Campus-only Access

None

Access Status

Doctoral Dissertation (Open Access)

Share

COinS