Abstract

The use of ultraviolet (UV) light and chlorine dioxide (ClO2) as an advanced oxidation process (AOP) has been investigated at the bench-scale to understand the effects of their use on disinfection by-product (DBP) formation potential (FP) in chlorinated groundwater (GW) and surface water (SW) supplies. Two GWs and two SWs of varying qualities were subject to a series of AOP treatment sequences at the bench scale: sodium hypochlorite, to serve as a baseline; ClO2-Cl2, UV-Cl2, and UV-ClO2-Cl2. In these treatment sequences, Cl2 is used as a primary and secondary disinfectant. Several water quality parameters were measured throughout the experiments, including chlorite (ClO2-) and chlorate (ClO3-) when ClO2 was used for process testing. Total trihalomethane (TTHM) FP curves were developed for each experiment along with the 7-day haloacetic acid (HAA) FP. The treatment sequence UV-ClO2 followed by Cl2 addition for GW supplies was shown to remove between 8 and 35 percent of the TTHM FP as compared to little to no change in formation potential with UV treatment alone followed by Cl2 addition. The SW supplies resulted in reductions between 16 and 27 percent for the treatment sequence UV-ClO2 followed by Cl2, approximately double the reduction from ClO2 alone followed by Cl2. GW treatment using the UV-ClO2 AOP followed by Cl2 was found to increase HAA formation, in one case by almost 50 percent compared to the baseline HAA concentrations. The research indicated the reduction of DBP FP AOP effectiveness to reduce DBP formation was highly dependent on the specific source water type and quality.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu.

Graduation Date

2020

Semester

Summer

Advisor

Duranceau, Steven

Degree

Master of Science in Environmental Engineering (M.S.Env.E.)

College

College of Engineering and Computer Science

Department

Civil, Environmental, and Construction Engineering

Degree Program

Environmental Engineering

Format

application/pdf

Identifier

CFE0008576; DP0024252

URL

https://purls.library.ucf.edu/go/DP0024252

Language

English

Release Date

February 2021

Length of Campus-only Access

None

Access Status

Masters Thesis (Campus-only Access)

Share

COinS