Abstract

Architectural imperatives due to the slowing of Moore's Law, the broad acceptance of relaxed semantics and the O(n!) worst case verification complexity of sequential histories motivate a new approach to concurrent correctness. Desiderata for a new correctness condition are that it be independent of sequential histories, compositional over objects, flexible as to timing, modular as to semantics and free of inherent locking or waiting. This dissertation proposes Quantifiability, a novel correctness condition based on intuitive first principles. Quantifiablity is formally defined with its system model. Useful properties of quantifiability such as compositionality, measurablility and observational refinement are demonstrated. Quantifiability models a system in vector space to launch a new mathematical analysis of concurrency. The vector space model is suitable for a wide range of concurrent systems and their associated data structures. Proof of correctness is facilitated with linear algebra, better supported and of more efficient time complexity than traditional combinatorial methods. Experimental results are presented showing that quantifiable data structures are highly scalable due to their use of relaxed semantics, an implementation trade-off that is explicitly permitted by quantifiability. The speedups attainable are theoretically analyzed. Because previous work lacked a metric for evaluating such trade-offs, a new measure is proposed here that applies communication theory to the disordered results of concurrent data structures. This entropy measure opens the way to analyze degrees of concurrent correctness across implementations to engineer system scalability and evaluate data structure quality under different workloads. With all its innovation, quantifiability is presented the context of previous work and existing correctness conditions.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu.

Graduation Date

2021

Semester

Fall

Advisor

Dechev, Damian

Degree

Doctor of Philosophy (Ph.D.)

College

College of Engineering and Computer Science

Department

Computer Science

Degree Program

Computer Science

Format

application/pdf

Identifier

CFE0008813

Language

English

Release Date

December 2021

Length of Campus-only Access

None

Access Status

Doctoral Dissertation (Open Access)

Share

COinS