Keywords

Ammonia, Hydrogen, Combustion, Lean Blowout, Jet-Stirred Reactor, Design

Abstract

Mixtures of ammonia and hydrogen have received significant interest recently as a possible replacement for hydrocarbon fuels. A toroidal jet-stirred reactor (TJSR) was designed and constructed to combust these mixtures in the well-stirred limit for validating chemical kinetic mechanisms and improving the current understanding of the combustion properties of this fuel. The TJSR was designed to achieve low residence times – on the order of 5 ms – to approximate the conditions in an aircraft gas turbine combustor. Simulations were conducted to determine mass flow rates, expected emissions output, and expected lean blow out. Based on these results, material studies were conducted to determine the best materials for each of the TJSR's components. Thermomechanical were conducted to determine the expected temperature distribution and thermal expansion during operation. Casing components were designed to seal the gases in the reactor as well as provide means to connect it to a pressure vessel or other piping. This work will allow for chemical mechanism validation of lean blowout in ammonia-hydrogen mixtures while laying the foundation for future high-pressure testing of such mixtures up to 60 bar.

Completion Date

2024

Semester

Spring

Committee Chair

Vasu, Subith

Degree

Master of Science in Aerospace Engineering (M.S.A.E.)

College

College of Engineering and Computer Science

Department

Mechanical and Aerospace Engineering

Degree Program

Aerospace Engineering

Format

application/pdf

Language

English

Rights

In copyright

Release Date

May 2025

Length of Campus-only Access

1 year

Access Status

Masters Thesis (Campus-only Access)

Campus Location

Orlando (Main) Campus

Accessibility Status

Meets minimum standards for ETDs/HUTs

Restricted to the UCF community until May 2025; it will then be open access.

Share

COinS