Title

Graphs Which, With Their Complements, Have Certain Clique Covering Numbers

Comments

Authors: contact us about adding a copy of your work at STARS@ucf.edu

Abbreviated Journal Title

Discret. Math.

Keywords

Mathematics

Abstract

Two common invariants of a graph G are its node clique cover number, θ0(G), and its edge clique cover number, θ1(G). We present in this work a characterization of those graphs for which they and their complements, Ḡ" role="presentation" style="box-sizing: border-box; margin: 0px; padding: 0px; display: inline-block; line-height: normal; font-size: 16.2px; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;">Ḡ, have θ0(G)=θ 1(G) and θ0(Ḡ" role="presentation" style="box-sizing: border-box; margin: 0px; padding: 0px; display: inline-block; line-height: normal; font-size: 16.2px; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;">Ḡ)=θ1(Ḡ" role="presentation" style="box-sizing: border-box; margin: 0px; padding: 0px; display: inline-block; line-height: normal; font-size: 16.2px; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;">Ḡ). Graphs satis ying these conditions are shown to constitute a subset of those graphs which we term C-graphs.

Journal Title

Discrete Mathematics

Volume

34

Issue/Number

1

Publication Date

1-1-1980

Document Type

Article

Language

English

First Page

1

WOS Identifier

WOS:A1981LF77400001

ISSN

0012-365X

Share

COinS