Title
Properties Of Learning In Artmap
Abbreviated Journal Title
Neural Netw.
Keywords
NEURAL NETWORK; PATTERN RECOGNITION; LEARNING; ADAPTIVE RESONANCE; THEORY; ART1; ARTMAP; NEURAL NETWORK; CLASSIFICATION; ARCHITECTURE; ART1; Computer Science, Artificial Intelligence
Abstract
In this paper we consider the ARTMAP architecture for situations requiring learning of many-to-one maps. It is shown that if ARTMAP is repeatedly presented with a list of input/output pairs, it establishes the required mapping in at most M(a) - 1 list presentations, where M(a) corresponds to the total number of ones in each one of the input patterns. Other useful properties, associated with the learning of the mapping represented by an arbitrary list of input/output pairs, are also examined, These properties reveal some of the characteristics of learning in ARTMAP when it is used as a tool in establishing an arbitrary mapping from a binary input space to a binary output space. The results presented in this paper are valid for the fast learning case, and for small beta(a) values, where beta(a) is a parameter associated with the adaptation of bottom-up weights in one of the ART1 modules of ARTMAP.
Journal Title
Neural Networks
Volume
7
Issue/Number
3
Publication Date
1-1-1994
Document Type
Article
Language
English
First Page
495
Last Page
506
WOS Identifier
ISSN
0893-6080
Recommended Citation
"Properties Of Learning In Artmap" (1994). Faculty Bibliography 1990s. 1047.
https://stars.library.ucf.edu/facultybib1990/1047
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu