Title
Numerical Modeling Of The Steady-State 2-Phase Closed Thermosiphon
Abbreviated Journal Title
Int. J. Heat Mass Transf.
Keywords
Thermodynamics; Engineering, Mechanical; Mechanics
Abstract
The steady-state performance of the gravity-assisted, two-phase, closed thermosyphon was modeled from first principles. Liquid-film momentum advection and axial normal stress, typically neglected by previous investigators, were included and shown to be important to the thermosyphon performance. The model presented also expanded previous analyses to include both temperature and heat-flux controlled thermosyphons and thermosyphons with mixed or other external boundary conditions. Numerical techniques were incorporated to solve the nonlinear governing equations and respective boundary conditions. A series of thermosyphon experiments were conducted. Predictions from the model agree well with experimental results. The parametric effects of operating temperatures, geometry, working fluid inventory and condenser thermal capacity were studied. The model presented could be used for optimization studies and design of thermosyphons.
Journal Title
International Journal of Heat and Mass Transfer
Volume
37
Issue/Number
17
Publication Date
1-1-1995
Document Type
Article
Language
English
First Page
2715
Last Page
2722
WOS Identifier
ISSN
0017-9310
Recommended Citation
"Numerical Modeling Of The Steady-State 2-Phase Closed Thermosiphon" (1995). Faculty Bibliography 1990s. 1258.
https://stars.library.ucf.edu/facultybib1990/1258
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu