Title
Dynamic Load Balancing In Multicomputer Database Systems Using Partition Tuning
Abbreviated Journal Title
IEEE Trans. Knowl. Data Eng.
Keywords
database machine; load balancing; parallel join algorithm; query; processing; relational database; MULTIPROCESSOR; Computer Science, Artificial Intelligence; Computer Science, Information; Systems; Engineering, Electrical & Electronic
Abstract
Shared nothing multiprocessor architecture is known to be more scalable to support very large databases. Compared to other join strategies, a hash-based join algorithm is particularly efficient and easily parallelized for this computation model, However, this hardware structure is very sensitive to the skew in tuple distribution. Unless the parallel hash join algorithm includes some dynamic load balancing mechanism, the skew effect can severely deteriorate the system performance. In this paper, we investigate this issue, in particular, three parallel hash join algorithms are presented, We implement a simulator to study the effectiveness of these schemes. The simulation model is validated by comparing the simulation results to those produced by the actual implementation of the algorithms running on a multiprocessor system. Our performance study indicates that a naive approach is not able to provide tangible savings, However, the carefully designed strategies can offer substantial improvement over conventional techniques for a wide range of skew conditions.
Journal Title
Ieee Transactions on Knowledge and Data Engineering
Volume
7
Issue/Number
6
Publication Date
1-1-1995
Document Type
Article
DOI Link
Language
English
First Page
968
Last Page
983
WOS Identifier
ISSN
1041-4347
Recommended Citation
"Dynamic Load Balancing In Multicomputer Database Systems Using Partition Tuning" (1995). Faculty Bibliography 1990s. 1364.
https://stars.library.ucf.edu/facultybib1990/1364
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu