Title
Stable Implementation Of The Rigorous Coupled-Wave Analysis For Surface-Relief Gratings - Enhanced Transmittance Matrix Approach
Abbreviated Journal Title
J. Opt. Soc. Am. A-Opt. Image Sci. Vis.
Keywords
DIFFRACTION ANALYSIS; DIELECTRIC GRATINGS; SCATTERING; Optics
Abstract
An enhanced, numerically stable transmittance matrix approach is developed and is applied to the implementation of the rigorous coupled-wave analysis for surface-relief and multilevel gratings. The enhanced approach is shown to produce numerically stable results for excessively deep multilevel surface-relief dielectric gratings. The nature of the numerical instability for the classic transmission matrix approach in the presence of evanescent fields is determined. The finite precision of the numerical representation on digital computers results in insufficient accuracy in numerically representing the elements produced by inverting an ill-conditioned transmission matrix. These inaccuracies will result in numerical instability in the calculations for successive field matching between the layers. The new technique that we present anticipates and preempts these potential numerical problems. In addition to the full-solution approach whereby all the reflected and the transmitted amplitudes are calculated, a simpler, more efficient formulation is proposed for cases in which only the reflected amplitudes (or the transmitted amplitudes) are required. Incorporating this enhanced approach into the implementation of the rigorous coupled-wave analysis, we obtain numerically stable and convergent results for excessively deep (50 wavelengths), 16-level, asymmetric binary gratings. Calculated results are presented for both TE and TM polarization and for conical diffraction.
Journal Title
Journal of the Optical Society of America a-Optics Image Science and Vision
Volume
12
Issue/Number
5
Publication Date
1-1-1995
Document Type
Article; Proceedings Paper
Language
English
First Page
1077
Last Page
1086
WOS Identifier
ISSN
0740-3232
Recommended Citation
"Stable Implementation Of The Rigorous Coupled-Wave Analysis For Surface-Relief Gratings - Enhanced Transmittance Matrix Approach" (1995). Faculty Bibliography 1990s. 1416.
https://stars.library.ucf.edu/facultybib1990/1416
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu