Title

Adaptive, Frequency Domain, 2-D Modeling Using Spatiotemporal Signals

Authors

Authors

W. B. Mikhael;H. P. Yu

Comments

Authors: contact us about adding a copy of your work at STARS@ucf.edu

Abbreviated Journal Title

J. Circuits Syst. Comput.

Keywords

Computer Science, Hardware & Architecture; Engineering, Electrical &; Electronic

Abstract

In this paper, an adaptive, frequency domain, steepest descent algorithm for two-dimensional (2-D) system modeling is presented. Based on the equation error model, the algorithm, which characterizes the 2-D spatially linear and invariant unknown system by a 2-D auto-regressive, moving-average (ARMA) process, is derived and implemented in the 3-D spatiotemporal domain. At each iteration, corresponding to a given pair of input and output 2-D signals, the algorithm is formulated to minimize the error-function's energy in the frequency domain by adjusting the 2-D ARMA model parameters. A signal dependent, optimal convergence factor, referred to as the homogeneous convergence factor, is developed. It is the same for all the coefficients but is updated once per iteration. The resulting algorithm is called the Two-Dimensional, Frequency Domain, with Homogeneous mu*, Adaptive Algorithm (ZD-FD-HAA). In addition, the algorithm is implemented using the 2-D Fast Fourier Transform (FFT) to enhance the computational efficiency. Computer simulations demonstrate the algorithm's excellent adaptation accuracy and convergence speed. For illustration, the proposed algorithm is successfully applied to modeling a time varying 2-D system.

Journal Title

Journal of Circuits Systems and Computers

Volume

6

Issue/Number

4

Publication Date

1-1-1996

Document Type

Article

Language

English

First Page

351

Last Page

358

WOS Identifier

WOS:A1996VR40400002

ISSN

0218-1266

Share

COinS