Title

Wave Propagation In A Guiding Structure: Beyond The Paraxial Approximation One Step

Authors

Authors

A. Y. Savchencko;B. Y. Zeldovich

Comments

Authors: contact us about adding a copy of your work at STARS@ucf.edu

Abbreviated Journal Title

J. Opt. Soc. Am. B-Opt. Phys.

Keywords

BERRY TOPOLOGICAL PHASE; REFLECTION; PHOTON; LIGHT; Optics

Abstract

Propagation of electromagnetic waves is considered for a medium with (x, y)-dependent locally isotropic dielectric and magnetic susceptibilities epsilon(ik) = epsilon(x, y)delta(ik) and mu(ik) = mu(x, y)delta(ik), i.e., for a waveguide. In the paraxial approximation the polarization is disconnected from the propagation. We have developed a self-consistent theory of the postparaxial corrections. It allows, in particular, for the description of intrafiber geometrical rotation of polarization and its inverse phenomenon, the optical Magnus effect, which are both determined by the profile of refractive index n = root epsilon mu only and constitute spin-orbit interaction of a photon. The birefringence splitting of linearly polarized modes or meridional rays on the other hand, turns out to be dependent on the gradients of impedance rho = root mu/epsilon the quadrupole part of spin-orbit interaction. An important point of the theory is a transformation of field variables such that the z-propagation operator becomes Hermitian, in analogy with the transitions from a full relativistic Dirac equation to the Schrodinger-Pauli equation with spin-orbital corrections. A theoretical explanation is given for the phenomenon previously observed in experiment: preservation of circular polarization by an axially symmetric step-profile multimode fiber and depolarization of an input linearly polarized wave by the same fiber. (C) 1996 Optical Society of America

Journal Title

Journal of the Optical Society of America B-Optical Physics

Volume

13

Issue/Number

2

Publication Date

1-1-1996

Document Type

Article

Language

English

First Page

273

Last Page

281

WOS Identifier

WOS:A1996TU98700005

ISSN

0740-3224

Share

COinS