Title
Performance Of Radial-Basis Function Networks For Direction Of Arrival Estimation With Antenna Arrays
Abbreviated Journal Title
IEEE Trans. Antennas Propag.
Keywords
antenna arrays; direction of arrival estimation; Engineering, Electrical & Electronic; Telecommunications
Abstract
The problem of direction of arrival (DOA) estimation of mobile users using linear antenna arrays is addressed, To reduce the computational complexity of superresolution algorithms, e.g. multiple signal classification (MUSIC), the DOA problem is approached as a mapping which can be modeled using a suitable artificial neural network trained with input output pairs, This paper discusses the application of a three-layer radial-basis function neural network (RBFNN), which can learn multiple source-direction findings of a six-element array, The network weights are modified using the normalized cumulative delta rule, The performance of this network is compared to that of the MUSIC algorithm for both uncorrelated and correlated signals, It Is also shown that the RBFNN substantially reduced the CPU time for the DOA estimation computations.
Journal Title
Ieee Transactions on Antennas and Propagation
Volume
45
Issue/Number
11
Publication Date
1-1-1997
Document Type
Article
DOI Link
Language
English
First Page
1611
Last Page
1617
WOS Identifier
ISSN
0018-926X
Recommended Citation
"Performance Of Radial-Basis Function Networks For Direction Of Arrival Estimation With Antenna Arrays" (1997). Faculty Bibliography 1990s. 1900.
https://stars.library.ucf.edu/facultybib1990/1900
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu