Title
Temperature-dependent absorptivity and cutting capability of CO2, Nd:YAG and chemical oxygen-iodine lasers
Abbreviated Journal Title
J. Laser Appl.
Keywords
absorptivity; temperature-dependent absorptivity; wavelength-dependent; absorptivity; laser cutting materials processing; YAG; CO2; chemical; oxygen-iodine laser; COIL; mathematical modeling; Materials Science, Multidisciplinary; Optics; Physics, Applied
Abstract
The most widely used high power industrial lasers are the Nd:YAG and CO2 lasers. The chemical oxygen iodine laser (COIL), whose wavelength (1.315 mu m) is between that of the Nd:YAG (1.06 mu m) and CO2 (10.6 mu m) lasers, is another high power laser for industrial applications. The cutting capability of these lasers is investigated in this paper. The cut depth strongly depends on the absorptivity of the cut material, kerf width and cutting speed. The absorptivity is an unknown parameter for which experimental data at high temperatures are currently unavailable. Theoretical values of the absorptivities of various metals are obtained using the Hagen-Ruben relationship. It is found that the absorptivity of a metal is linearly proportional to the square root of its resistivity and also inversely proportional to the square root of the wavelength. The absorptivities of the COIL and Nd:YAG lasers are 2.84 and 3.16 times larger than that of the CO2 laser, respectively. Based on these theoretical values of the absorptivity, the cut depths for several metals are analyzed at various laser powers and cutting speeds for these lasers. For identical cutting parameters, the cut depths for stainless steel and titanium are deeper than those of most other metals. Due to the wavelength dependence of the absorptivity, the cut depths for COIL and Nd:YAG lasers are expected to be 2.84 and 3.16 times deeper than that for the CO2 laser.
Journal Title
Journal of Laser Applications
Volume
9
Issue/Number
2
Publication Date
1-1-1997
Document Type
Article
Language
English
First Page
77
Last Page
85
WOS Identifier
ISSN
1042-346X
Recommended Citation
"Temperature-dependent absorptivity and cutting capability of CO2, Nd:YAG and chemical oxygen-iodine lasers" (1997). Faculty Bibliography 1990s. 2141.
https://stars.library.ucf.edu/facultybib1990/2141
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu