Title

Poling and characterization of polymer waveguides for modal dispersion phase-matched second-harmonic generation

Authors

Authors

M. Jager; G. I. Stegeman; S. Yilmaz; W. Wirges; W. Brinker; S. Bauer-Gogonea; S. Bauer; M. Ahlheim; M. Stahelin; B. Zysset; F. Lehr; M. Diemeer;M. C. Flipse

Comments

Authors: contact us about adding a copy of your work at STARS@ucf.edu

Abbreviated Journal Title

J. Opt. Soc. Am. B-Opt. Phys.

Keywords

CHANNEL WAVE-GUIDES; 2ND-HARMONIC GENERATION; ELECTROOPTIC COEFFICIENT; POLED POLYMERS; LOCKING; FILM; Optics

Abstract

New multilayer polymer waveguides have been introduced with inverted nonlinear layers for efficient modal dispersion phase-matched second-harmonic generation at the telecommunication wavelength near 1.55 mu m. The nonlinear optical core of the waveguides consists of two modified Disperse Red 1-based side-chain polymers with different glass-transition temperatures. The signs of the nonlinear optical coefficients are different in the two polymers after suitable poling above and between the respective glass transitions, thereby optimizing the overlap integral. The optical nonlinearity profile is controlled by in situ electro-optical measurements during the two poling steps. The successful preparation of inverted layers is verified by electro-optical, pyro-electrical, and second-harmonic-generation thermal analysis. Waveguide losses are low at 1.55 mu m (4 dB/cm) and high at 800 nm (100 dB/cm) because of the residual absorption of the Disperse Red 1-like chromophores. Phase-matched second-harmonic generation has been demonstrated with a large figure of merit, 14%/W cm(-2). Extensive room for improvement in second-harmonic generation is possible with optimized chromophores, because the total conversion efficiency is strongly limited by the harmonic losses in the modified Disperse Red 1. (C) 1998 Optical Society of America.

Journal Title

Journal of the Optical Society of America B-Optical Physics

Volume

15

Issue/Number

2

Publication Date

1-1-1998

Document Type

Article

Language

English

First Page

781

Last Page

788

WOS Identifier

WOS:000072015600032

ISSN

0740-3224

Share

COinS