Title
Femtosecond Hybrid Mode-Locked Semiconductor-Laser And Amplifier Dynamics
Abbreviated Journal Title
Appl. Phys. B-Lasers Opt.
Keywords
PICOSECOND PULSE GENERATION; INGAASP OPTICAL AMPLIFIERS; SELF-PHASE; MODULATION; SUBPICOSECOND PULSES; 2-PHOTON ABSORPTION; GAIN SATURATION; ALGAAS; DIODE; LOCKING; BAND; Optics; Physics, Applied
Abstract
We describe the generation of femtosecond high power optical pulses using hybrid passive-active mode-locking techniques. Angle stripe geometry GaAs/AlGaAs semiconductor laser amplifiers are employed in an external cavity including prisms and a stagger-tuned quantum-well saturable absorber. An identical amplifier also serves as an optical power amplifier in a stretched pulse amplification and recompression sequence. After amplification and pulse compression this laser system produces 200 fs, 160 W peak power pulses. We discuss and extend our theory, and supporting phenomenological models, of picosecond and subpicosecond optical pulse amplification in semiconductor laser amplifiers which has been successful in calculating measured spectra and time-resolved dynamics in our amplifiers. We have refined the theory to include a phenomenological model of spectral hole-burning for finite intraband thermalization time. Our calculations are consistent with an intraband time of approximately 60 fs. This theory of large signal subpicosecond pulse amplification will be an essential tool for understanding the mode-locking dynamics of semiconductor lasers and for analysis of high speed multiple wave-length optical signal processing and transmission devices and systems based on semiconductor laser amplifiers.
Journal Title
Applied Physics B-Lasers and Optics
Volume
58
Issue/Number
3
Publication Date
1-1-1994
Document Type
Article
DOI Link
Language
English
First Page
183
Last Page
195
WOS Identifier
ISSN
0946-2171
Recommended Citation
"Femtosecond Hybrid Mode-Locked Semiconductor-Laser And Amplifier Dynamics" (1994). Faculty Bibliography 1990s. 2940.
https://stars.library.ucf.edu/facultybib1990/2940
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu