Title
Spectroscopy, Equation Of State And Monopole Percolation In Lattice Qed With 2 Flavors
Abbreviated Journal Title
Nucl. Phys. B
Keywords
CRITICAL EXPONENTS; GAUGE-THEORIES; FERMIONS; LIMIT; Physics, Particles & Fields
Abstract
Non-compact lattice QED with two flavors of light dynamical quarks is simulated on 16(4) lattices, and the chiral condensate, monopole density and susceptibility and the meson masses are measured. Data from relatively high statistics runs at relatively small bare fermion masses of 0.005, 0.01, 0.02 and 0.03 (lattice units) are presented. Three independent methods of data analysis indicate that the critical point occurs at beta = 0.225(5) and that the monopole condensation and chiral symmetry breaking transitions are coincident. The monopole condensation data satisfies finite-size scaling hypotheses with critical indices compatible with four-dimensional percolation. The best chiral equation of state fit produces critical exponents (delta = 2.31, beta(mag) = 0.763) which deviate significantly from mean field expectations. Data for the ratio of the sigma to pion masses produces an estimate of the critical index delta in good agreement with chiral condensate measurements. In the strong coupling phase the ratio of the meson masses are M(sigma)2/M(rho)2 almost-equal-to 0.35, M(A)1(2)/M(rho)2 almost-equal-to 1.4 and M(pi)2/M(rho)2 almost-equal-to 0.0, while on the weak coupling side of the transition M(pi)2/M(rho)2 almost-equal-to 1.0, M(A)1(2)/M(rho)2 almost-equal-to 1.0, indicating the restoration of chiral symmetry.
Journal Title
Nuclear Physics B
Volume
413
Issue/Number
1-2
Publication Date
1-1-1994
Document Type
Article
Language
English
First Page
503
Last Page
534
WOS Identifier
ISSN
0550-3213
Recommended Citation
"Spectroscopy, Equation Of State And Monopole Percolation In Lattice Qed With 2 Flavors" (1994). Faculty Bibliography 1990s. 2946.
https://stars.library.ucf.edu/facultybib1990/2946
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu