Title

Infrared To Ultraviolet Measurements Of Two-Photon Absorption And N(2) In Wide Bandgap Solids

Authors

Authors

R. DeSalvo; A. A. Said; D. J. Hagan; E. W. VanStryland;M. SheikBahae

Comments

Authors: contact us about adding a copy of your work at STARS@ucf.edu

Abbreviated Journal Title

IEEE J. Quantum Electron.

Keywords

2-PHOTON ABSORPTION; NONLINEAR REFRACTION; ZINCBLENDE SEMICONDUCTORS; OPTICAL-PROPERTIES; SINGLE-BEAM; Z-SCAN; DISPERSION; ANISOTROPY; SPECTRA; RULES; Engineering, Electrical & Electronic; Optics; Physics, Applied

Abstract

The bound electronic nonlinear refractive index, n(2), and two-photon absorption (2PA) coefficient, beta, are measured in a variety of inorganic dielectric solids at the four harmonics of the Nd:YAG laser using Z scan, The specific materials studied are: barium fluoride (BaF2), calcite (CaCO3), potassium bromide (KBr), lithium fluoride (LiF), magnesium fluoride (MgF2), sapphire (Al2O3), a tellurite glass (75%TeO2 + 20%ZnO + 5%Na2O) and fused silica (SiO2). We also report n(2) and beta in three second-order, chi((2)), nonlinear crystals: potassium titanyl phosphate (KTiOPO4 or KTP), lithium niobate (LiNbO3), and beta-barium berate (beta-BaB2O4 or BBO). Nonlinear absorption or refraction can alter the wavelength conversion efficiency in these materials, The results of this study are compared to a simple two-parabolic band model originally developed to describe zincblende semiconductors, This model gives the bandgap energy (E(g)) scaling and spectrum of the change in absorption, The dispersion of n(2) as obtained from a Kramers-Kronig transformation of this absorption change scales as E(g)(4-). The agreement of this theory to data for semiconductors was excellent, However, as could be expected, the agreement for these wide bandgap materials is not as good, although general trends such as increasing nonlinearity with decreasing bandgap energy can be seen.

Journal Title

Ieee Journal of Quantum Electronics

Volume

32

Issue/Number

8

Publication Date

1-1-1996

Document Type

Article

Language

English

First Page

1324

Last Page

1333

WOS Identifier

WOS:A1996VA81400008

ISSN

0018-9197

Share

COinS