Title
Dispersion Of Bound Electronic Nonlinear Refraction In Solids
Abbreviated Journal Title
IEEE J. Quantum Electron.
Keywords
NON-LINEAR REFRACTION; 2-PHOTON ABSORPTION; SINGLE-BEAM; SEMICONDUCTORS; COEFFICIENTS; LIMITATION; INDEX; Engineering, Electrical & Electronic; Optics; Physics, Applied
Abstract
A two-band model is used to calculate the scaling and spectrum of the nondegenerate nonlinear absorption DELTA-alpha(omega-1; omega-2). From this, the bound electronic nonlinear refractive index n2 is obtained using a Kramers-Kronig transformation. We include the effects of two-photon and Raman transitions and the ac Stark shift (virtual band blocking). The theoretical calculation for n2 shows excellent agreement with measured values for a five order of magnitude variation in the modulus of n2 in semiconductors and wide-gap optical solids. We also present new measurements of n2 in semiconductors using the Z-scan method. The observed change of sign of n2 midway between the two-photon absorption edge and the fundamental absorption edge is also predicted. Thus, we now have a comprehensive theory that allows a determination of n2 at wavelengths beneath the band edge, given only the bandgap energy and the linear index of refraction. Such information is useful for a variety of applications including optical limiting, laser-induced damage, and all-optical switching. Some consequences for all-optical switching are discussed, and a wavelength criterion for the observation of switching is derived.
Journal Title
Ieee Journal of Quantum Electronics
Volume
27
Issue/Number
6
Publication Date
1-1-1991
Document Type
Article
DOI Link
Language
English
First Page
1296
Last Page
1309
WOS Identifier
ISSN
0018-9197
Recommended Citation
"Dispersion Of Bound Electronic Nonlinear Refraction In Solids" (1991). Faculty Bibliography 1990s. 332.
https://stars.library.ucf.edu/facultybib1990/332
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu