Title
Optically Driven Photoconductive Devices For Power Switching Application .2. Thermal Modeling Including Heat Sink
Keywords
Photoconductive Devices; Diodes; Power Switching; Semiconductors Devices; Engineering, Electrical & Electronic
Abstract
The removal of heat generated in power devices using a heat sink is increasingly important for packaging and reliability, particularly for the photoconductive circuit element (PCE) which can conduct a large current when used as a high power switch. The paper presents a thermal model for estimating the relationship between the temperature in a p+-i-n+ PCE and the required geometry of the heat sink under steady-state dark and illuminated operations. The model is based on a one-dimensional heat-transfer analysis and relevant semiconductor device physics. Given the bias condition, the geometry and the material for the PCE, and the material for the heat sink, the model can predict the area of the heat sink needed for a desired temperature in the device. Calculations for different semiconductor thicknesses, different metals (aluminum and copper), different semiconductors (Si and GaAs), different applied voltages, different levels of optical excitation and different device operations (turn-on and turn-off operations) are illustrated.
Journal Title
Iee Proceedings-G Circuits Devices and Systems
Volume
139
Issue/Number
3
Publication Date
1-1-1992
Document Type
Article
Language
English
First Page
350
Last Page
355
WOS Identifier
ISSN
0956-3768
Recommended Citation
"Optically Driven Photoconductive Devices For Power Switching Application .2. Thermal Modeling Including Heat Sink" (1992). Faculty Bibliography 1990s. 519.
https://stars.library.ucf.edu/facultybib1990/519
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu