Title
The Nonstationary Effects On A Softening Duffing Oscillator
Abbreviated Journal Title
Mech. Res. Commun.
Keywords
Period-Doubling Bifurcations; Chaotic Motion; Transition; Responses; Pendulum; Mechanics
Abstract
This paper presents a numerical study for the bifurcations of a softening Duffing oscillator subjected to stationary and nonstationary excitation. The nonstationary inputs used are linear functions of time. The bifurcations are the results of either a single control parameter or two control parameters that are constrained to vary in a selected direction on the plane of forcing amplitude and forcing frequency. The results indicate: 1. Delay (memory, penetration) of nonstationary bifurcations relative to stationary bifurcations may occur. 2. The nonstationary trajectories jump into the neighboring stationary trajectories with possible overshoots, while the stationary trajectories transit smoothly. 3. The nonstationary penetrations (delays) are compressed to zero with an increasing number of iterations. 4. The nonstationary responses converge through a period-doubling sequence to a nonstationary limit motion that has the characteristics of chaotic motion. The Duffing oscillator has been used as an example of the existence of broad effects of nonstationary (time dependent) and codimensional (control parameter variations in the bifurcation region) inputs which markedly modify the dynamical behavior of dynamical systems.
Journal Title
Mechanics Research Communications
Volume
21
Issue/Number
6
Publication Date
1-1-1994
Document Type
Article
Language
English
First Page
555
Last Page
564
WOS Identifier
ISSN
0093-6413
Recommended Citation
"The Nonstationary Effects On A Softening Duffing Oscillator" (1994). Faculty Bibliography 1990s. 750.
https://stars.library.ucf.edu/facultybib1990/750
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu