Abbreviated Journal Title
J. Appl. Phys.
Keywords
Free-Surface; Fluid-Flow; Steady-State; Melting Problems; Pool; Convection; Heat-Transfer; Melted Pools; Keyhole; Penetration; Dynamics; Physics; Applied
Abstract
Laser welding is a unique way of joining materials with less thermal distortion and minimum metallurgical damage to the workpiece. The molten pool formed during welding determines the shape of the final welded region. At high laser intensities, the molten material vaporizes and a key hole is formed during the welding process. This vapor and the shape of the molten pool affect the absorption of laser at the liquid surface. The forces generated at the liquid-vapor interface due to surface tension gradient induce thermocapillary convection in the weld pool. This paper presents a mathematical model by considering these surface forces and the energy balance at the liquid-vapor and solid-liquid interfaces. The model is used to predict the surface velocity and temperature distributions, weld pool shape, key-hole depth and diameter. The velocity field is found to be large in the radial and azimuthal directions before the key hole is formed, and it changes to a radially and axially dominant field after the formation of the key hole. The results of this model are also compared with experimental data.
Journal Title
Journal of Applied Physics
Volume
78
Issue/Number
11
Publication Date
1-7-1995
Document Type
Article
DOI Link
Language
English
First Page
6353
Last Page
6360
WOS Identifier
ISSN
0021-8979
Recommended Citation
Kar, A. and Mazumder, J., "Mathematical-Modeling Of Key-Hole Laser-Welding" (1995). Faculty Bibliography 1990s. 762.
https://stars.library.ucf.edu/facultybib1990/762
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu