Title
Theoretical Prediction Of The Performance Of Si And Sic Bipolar-Transistors Operating At High-Temperatures
Keywords
Bipolar Transistors; Silicon; Silicon Carbide; Cutoff Frequency; Majority Carrier Concentration; Engineering, Electrical & Electronic
Abstract
Silicon carbide (SiC) is a promising material for semiconductor devices operated at high temperatures because of its large energy bandgap, high thermal conductivity and silicon compatibility. This paper develops an analytical model to predict and compare the d.c and a.c performance of SiC and conventional Si bipolar junction transistors (BJTs) at high temperatures. Based on the device parameters available in the literature, our calculations show that the SiC BJT indeed possesses a higher current gain than its silicon counterpart as the temperature is increased beyond 500 K. This is primarily because SiC has a larger bandgap than Si. As a result, at high temperatures, the majority carrier concentration in the base of the SiC BJT remains the same value as the doping concentration, whereas the majority carrier concentration in the base of the Si BJT increases considerably beyond the doping concentration. The cutoff frequency of the SiC BJT, however, decreases and becomes smaller than that of the Si BJT when the temperature increases. We suggest this is caused by a faster decrease in the electron mobility of SiC than of Si as the temperature is increased. The model compares favourably with data measured from a typical Si BJT.
Journal Title
Iee Proceedings-G Circuits Devices and Systems
Volume
140
Issue/Number
4
Publication Date
1-1-1993
Document Type
Article
Language
English
First Page
289
Last Page
293
WOS Identifier
ISSN
0956-3768
Recommended Citation
"Theoretical Prediction Of The Performance Of Si And Sic Bipolar-Transistors Operating At High-Temperatures" (1993). Faculty Bibliography 1990s. 836.
https://stars.library.ucf.edu/facultybib1990/836
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu