Title
An inverse method for the determination of full field stresses from experimentally measured normal strains
Abbreviated Journal Title
J. Strain Anal. Eng. Des.
Keywords
neutron diffraction; inverse problem; finite difference method; least; square approximation; Engineering, Mechanical; Mechanics; Materials Science, Characterization; & Testing
Abstract
Certain diffraction-based techniques that measure strains in bulk samples are limited to determination of normal strains. A numerical inverse method is developed to determine full field stresses from the experimentally determined normal strains in isotropic solids under plane stress conditions. The method is based on satisfying the equations of equilibrium and the constitutive relations. The finite difference method is employed to solve the equations and to determine the complete stress field. Furthermore, a least-squares procedure is used to determine the unknown functions of integration in conjunction with known values of shear stress along a reference line. The method is verified by using the normal strain fields in various specimens obtained using both finite element analysis and exact elasticity solutions. It is found that the proposed method predicts the shear stresses accurately in the examples considered.
Journal Title
Journal of Strain Analysis for Engineering Design
Volume
42
Issue/Number
6
Publication Date
1-1-2007
Document Type
Article
Language
English
First Page
469
Last Page
476
WOS Identifier
ISSN
0309-3247
Recommended Citation
"An inverse method for the determination of full field stresses from experimentally measured normal strains" (2007). Faculty Bibliography 2000s. 11.
https://stars.library.ucf.edu/facultybib2000/11
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu