Title
The Jones polynomial: Quantum algorithms and applications in quantum complexity theory
Abbreviated Journal Title
Quantum Inform. Comput.
Keywords
quantum algorithms; quantum complexity theory; topological quantum; computation; BRAID-GROUPS; COMPUTATION; SUBFACTORS; Computer Science, Theory & Methods; Physics, Particles & Fields; Physics, Mathematical
Abstract
We analyze relationships between quantum computation and a family of generalizations of the Jones polynomial. Extending recent work by Aharonov et al., we give efficient quantum circuits for implementing the unitary Jones-Wenzl representations of the braid group. We use these to provide new quantum algorithms for approximately evaluating a family of specializations of the HOMFLYPT two-variable polynomial of trace closures of braids. We also give algorithms for approximating the Jones polynomial of a general class of closures of braids at roots of unity. Next we provide a self-contained proof of a result of Freedman et al. that any quantum computation can be replaced by an additive approximation of the Jones polynomial, evaluated at almost any primitive root of unity. Our proof encodes two-qubit unitaries into the rectangular representation of the eight-strand braid group. We then give QCMA-complete and PSPACE-cornplete problems which are based on braids. We conclude with direct proofs that evaluating the Jones polynomial of the plat closure at most primitive roots of unity is a #P-hard problem, while learning its most significant bit is PP-hard, circumventing the usual route through the Tutte polynomial and graph coloring.
Journal Title
Quantum Information & Computation
Volume
8
Issue/Number
1-2
Publication Date
1-1-2008
Document Type
Article
Language
English
First Page
147
Last Page
180
WOS Identifier
ISSN
1533-7146
Recommended Citation
"The Jones polynomial: Quantum algorithms and applications in quantum complexity theory" (2008). Faculty Bibliography 2000s. 1139.
https://stars.library.ucf.edu/facultybib2000/1139
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu