Abbreviated Journal Title
J. Geophys. Res-Space Phys.
Keywords
LOWER THERMOSPHERE; MIDDLE ATMOSPHERE; DRIVEN FLUCTUATIONS; RADAR; OBSERVATIONS; UPPER MESOSPHERE; CORIOLIS-FORCE; OH NIGHTGLOW; AIRGLOW; PROPAGATION; DISPERSION; Astronomy & Astrophysics
Abstract
[1] A time-dependent and fully nonlinear numerical model is employed to solve the Navier-Stokes equations in two spatial dimensions and to describe the propagation of a Gaussian gravity wave packet generated in the troposphere. A Fourier spectral analysis is used to analyze the frequency power spectra of the wave packet, which propagates through and dwells within several thermal ducting regions. The frequency power spectra of the wave packet are derived at several discrete altitudes, which allow us to determine the evolution of the packet. This spectral analysis also clearly reveals the existence of a stratospheric duct, a mesospheric and lower thermospheric duct, and a duct lying between the tropopause and the lower thermosphere. In addition, we determine the spatially localized wave kinetic energy density and the horizontally averaged, time-resolved, normalized vertical velocity. Examination of these diagnostic variables allows us to better understand the process of wave ducting and the vertical transport of wave energy among multiple thermal ducts. The spectral analysis allows us to unambiguously identify the ducted wave modes. These results compare favorably with those derived from a full-wave model.
Journal Title
Journal of Geophysical Research-Space Physics
Volume
112
Issue/Number
A6
Publication Date
1-1-2007
Document Type
Article
Language
English
First Page
12
WOS Identifier
ISSN
0148-0227
Recommended Citation
Yu, Yonghui and Hickey, Michael P., "Numerical modeling of a gravity wave packet ducted by the thermal structure of the atmosphere" (2007). Faculty Bibliography 2000s. 14.
https://stars.library.ucf.edu/facultybib2000/14
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu