Title
Effect of hydrogen on the physical and mechanical properties of silicon carbide-derived carbon films
Abbreviated Journal Title
Surf. Coat. Technol.
Keywords
Silicon carbide; Chlorination; Graphitization; Nanoindentation; Plasticity; SEAL FACE MATERIALS; DRY LINE CONTACT; TRIBOLOGICAL BEHAVIOR; TITANIUM; CARBIDE; CERAMICS; HARDNESS; DIAMOND; NANOINDENTATION; CHLORINATION; MODULUS; Materials Science, Coatings & Films; Physics, Applied
Abstract
In this study, the effect of hydrogen on the structure and mechanical properties of carbon films produced by selective etching of monolithic SiC was examined. The process to produce carbon films from SiC (i.e., SiC-derived carbon, CDC) was carried out in a gas mixture of Cl(2) and H(2) at 1000 degrees C for 20 h. The Raman intensity ratio, I(D)/I(G), where subscripts D and G refer to diamond and graphite, decreased as the hydrogen concentration in the gas mixture increased, indicating a decrease in the sp(2) carbon cluster. XRD analysis also showed that the fraction of graphitization decreased as the hydrogen concentration increased. The addition of hydrogen that prevented the formation of graphite (sp(2) bonding) also resulted in a reduction in the film thickness. The hardness and elastic modulus of the carbon films tended to decrease as the H(2) content increased owing to the contribution from the C-H bond and the nano-size pore. (C) 2009 Elsevier B.V. All rights reserved.
Journal Title
Surface & Coatings Technology
Volume
204
Issue/Number
6-7
Publication Date
1-1-2009
Document Type
Article; Proceedings Paper
Language
English
First Page
1018
Last Page
1021
WOS Identifier
ISSN
0257-8972
Recommended Citation
"Effect of hydrogen on the physical and mechanical properties of silicon carbide-derived carbon films" (2009). Faculty Bibliography 2000s. 1425.
https://stars.library.ucf.edu/facultybib2000/1425
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu