Title

Unitary representations of wavelet groups and encoding of iterated function systems in solenoids

Authors

Authors

D. E. Dutkay; P. E. T. Jorgensen;G. Picioroaga

Comments

Authors: contact us about adding a copy of your work at STARS@ucf.edu

Abbreviated Journal Title

Ergod. Theory Dyn. Syst.

Keywords

SELF-AFFINE TILES; DIGIT SETS; RADIX REPRESENTATIONS; PROJECTIVE; MEASURES; R-N; LATTICE; R(N); OPERATORS; FRACTALS; BASES; Mathematics, Applied; Mathematics

Abstract

For points in d real dimensions, we introduce a geometry for general digit sets. We introduce a positional number system where the basis for our representation is a fixed d by d matrix over Z. Our starting point is a given pair (A, D) with the matrix A assumed expansive, and D a chosen complete digit set, i.e., in bijective correspondence with the points in Z(d)/A(T)Z(d). We give all explicit geometric representation and encoding with infinite words in letters from D. We show that the attractor X(A(T), D) for an affine Iterated Function System (IFS) based on (A, D) is a set of fractions for our digital representation of points in R(d). Moreover our positional 'number representation' is spelled out in the form of an explicit IFS-encoding of a compact solenoid S(A) associated with the pair (A, D). The intricate part (Theorem 6.15) is played by the cycles in Z(d) for the initial (A, D)-IFS. Using these cycles we are able to write down formulas for the two maps which do the encoding as well as the decoding in our positional D-representation. We show how some wavelet representations call be realized on the solenoid, and on symbolic spaces.

Journal Title

Ergodic Theory and Dynamical Systems

Volume

29

Publication Date

1-1-2009

Document Type

Article

Language

English

First Page

1815

Last Page

1852

WOS Identifier

WOS:000272114700007

ISSN

0143-3857

Share

COinS