Title
Unitary representations of wavelet groups and encoding of iterated function systems in solenoids
Abbreviated Journal Title
Ergod. Theory Dyn. Syst.
Keywords
SELF-AFFINE TILES; DIGIT SETS; RADIX REPRESENTATIONS; PROJECTIVE; MEASURES; R-N; LATTICE; R(N); OPERATORS; FRACTALS; BASES; Mathematics, Applied; Mathematics
Abstract
For points in d real dimensions, we introduce a geometry for general digit sets. We introduce a positional number system where the basis for our representation is a fixed d by d matrix over Z. Our starting point is a given pair (A, D) with the matrix A assumed expansive, and D a chosen complete digit set, i.e., in bijective correspondence with the points in Z(d)/A(T)Z(d). We give all explicit geometric representation and encoding with infinite words in letters from D. We show that the attractor X(A(T), D) for an affine Iterated Function System (IFS) based on (A, D) is a set of fractions for our digital representation of points in R(d). Moreover our positional 'number representation' is spelled out in the form of an explicit IFS-encoding of a compact solenoid S(A) associated with the pair (A, D). The intricate part (Theorem 6.15) is played by the cycles in Z(d) for the initial (A, D)-IFS. Using these cycles we are able to write down formulas for the two maps which do the encoding as well as the decoding in our positional D-representation. We show how some wavelet representations call be realized on the solenoid, and on symbolic spaces.
Journal Title
Ergodic Theory and Dynamical Systems
Volume
29
Publication Date
1-1-2009
Document Type
Article
Language
English
First Page
1815
Last Page
1852
WOS Identifier
ISSN
0143-3857
Recommended Citation
"Unitary representations of wavelet groups and encoding of iterated function systems in solenoids" (2009). Faculty Bibliography 2000s. 1503.
https://stars.library.ucf.edu/facultybib2000/1503
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu