Title

A meshless CFD approach for evolutionary shape optimization of bypass grafts anastomoses

Authors

Authors

Z. El Zahab; E. Divo;A. Kassab

Comments

Authors: contact us about adding a copy of your work at STARS@ucf.edu

Abstract

Improving the blood flow or hemodynamics in the synthetic bypass graft end-to-side distal anastomosis (ETSDA) is an important element for the long-term success of bypass surgeries. An ETSDA is the interconnection between the graft and the operated-on artery. The control of hemodynamic conditions through the ETSDA is mostly dictated by the shape of the ETSDA. Thus, a formal ETSDA shape optimization would serve the goal of improving the ETSDA flowfield. Computational fluid dynamics (CFD) is a convenient tool to quantify hemodynamic parameters; also, the genetic algorithm (GA) is an effective tool to identify the ETSDA optimal shape that modify those hemodynamic quantities such that the optimization objective is met. The present article introduces a unique approach where a meshless CFD solver is coupled to a GA for the purpose of optimizing the ETSDA shape. Three anastomotic models are optimized herein: the conventional ETSDA, the Miller cuff ETSDA and the hood ETSDA. Results demonstrate the effectiveness of the proposed integrated optimization approach in obtaining anastomoses optimal shapes.

Journal Title

Inverse Problems in Science and Engineering

Volume

17

Issue/Number

3

Publication Date

1-1-2009

Document Type

Article

First Page

411

Last Page

435

WOS Identifier

WOS:000264530700010

ISSN

1741-5977

Share

COinS