Abstract
An optimal control problem for semilinear elliptic partial differential equations is considered. The equation is in divergence form with the leading term containing the control. Necessary conditions for optimal controls are established by the method of homogenized spike variation. The key to such a method is to modify the usual spike variational technique by taking into account the homogenization techniques for elliptic equations, together with an idea from the theory of relaxed controls. Problems with state constraints are also discussed by further adding some well-known penalty arguments involving the application of Ekeland's variational principle and finite codimensionality of certain sets.
Journal Title
Siam Journal on Control and Optimization
Volume
48
Issue/Number
4
Publication Date
1-1-2009
Document Type
Article
DOI Link
First Page
2366
Last Page
2387
WOS Identifier
ISSN
0363-0129
Recommended Citation
Lou, Hongwei and Yong, Jiongmin, "Optimality Conditions for Semilinear Elliptic Equations With Leading Term Containing Controls" (2009). Faculty Bibliography 2000s. 1831.
https://stars.library.ucf.edu/facultybib2000/1831
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu