Title
Quantum phase measurements and a general method for the simulation of random processes
Abbreviated Journal Title
Nonlinear Anal.-Theory Methods Appl.
Keywords
SU(2); STATE; Mathematics, Applied; Mathematics
Abstract
Quantum interferences offer the potential for improving the effective resolution wavelength of many measurements by a factor of N. Coincidence detection methods to date have been limited to N = 4 due to an increase in complexity of the apparatus with N. We offer an alternative method of extracting this higher-order phase information from a standard (first-order) interferometer. This "phase function fitting'' algorithm also eliminates the need to null the interferometer. We compare the interferometer's statistics to those of the quantum phase measurement, which we also utilize to derive Heisenberg limits for the quantum noon states. States which surpass this noon state limit are then demonstrated; and we discuss how state optimization for various signal environments might proceed. The phase representation is also shown to yield computationally efficient and conceptually revealing forms for calculating the statistics of the interferometer itself. We define a static limit in which the signal varies slowly enough that we can make the integration time long enough to approach perfect measurement of the interferometer statistics. We discuss the sense in which the phase function fitting algorithm can approach zero error in this limit, while still at finite N-satisfying the power constraint (but approaching infinite energy as we collect over longer times). To incorporate the signal dynamics we present a general method in which we can approximately prescribe the autocorrelation, as well as the probability distribution, of a random process; and illustrate how probabilistic effects can mitigate the spectral distortions of an onlinear mapping. Mathematical challenges in applying these techniques to the simulation of the quantum phase measurement are circumvented-enabling the simulation of a variety of quantum algorithms for the estimation and tracking of various signal models in this exciting application. (C) 2009 Published by Elsevier Ltd
Journal Title
Nonlinear Analysis-Theory Methods & Applications
Volume
71
Issue/Number
12
Publication Date
1-1-2009
Document Type
Article
Language
English
First Page
E1160
Last Page
E1168
WOS Identifier
ISSN
0362-546X
Recommended Citation
"Quantum phase measurements and a general method for the simulation of random processes" (2009). Faculty Bibliography 2000s. 2130.
https://stars.library.ucf.edu/facultybib2000/2130
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu