Title

Modeling the Optical Behavior of Complex Organic Media: From Molecules to Materials

Authors

Authors

P. A. Sullivan; H. L. Rommel; Y. Takimoto; S. R. Hammond; D. H. Bale; B. C. Olbricht; Y. Liao; J. Rehr; B. E. Eichinger; A. K. Y. Jen; P. J. Reid; L. R. Dalton;B. H. Robinson

Comments

Authors: contact us about adding a copy of your work at STARS@ucf.edu

Abbreviated Journal Title

J. Phys. Chem. B

Keywords

HYPER-RAYLEIGH SCATTERING; BOND-LENGTH ALTERNATION; ELECTROOPTIC; ACTIVITY; 1ST HYPERPOLARIZABILITY; 2ND-HARMONIC GENERATION; CONJUGATED; MOLECULES; CHROMOPHORES; POLARIZATION; LIQUIDS; POLYMER; Chemistry, Physical

Abstract

For the past three decades, a full understanding of the electro-optic (EO) effect in amorphous organic media has remained elusive. Calculating a bulk material property from fundamental molecular properties, intermolecular electrostatic forces, and field-induced net acentric dipolar order has proven to be very challenging. Moreover, there has been a gap between ab initio quantum-mechanical (QM) predictions of molecular properties and their experimental verification at the level of bulk materials and devices. This report unifies QM-based estimates of molecular properties with the statistical mechanical interpretation of the order in solid phases of electric-field-poled, amorphous, organic dipolar chromophore-containing materials. By combining interdependent statistical and quantum mechanical methods, bulk material EO properties are predicted. Dipolar order in bulk, amorphous phases of EO materials can be understood in terms of simple coarse-grained force field models when the dielectric properties of the media are taken into account. Parameters used in the statistical mechanical modeling are not adjusted from the QM-based values, yet the agreement with the experimentally determined electro-optic coefficient is excellent.

Journal Title

Journal of Physical Chemistry B

Volume

113

Issue/Number

47

Publication Date

1-1-2009

Document Type

Article

Language

English

First Page

15581

Last Page

15588

WOS Identifier

WOS:000271826300021

ISSN

1520-6106

Share

COinS