Title
Third-order partial differential equations arising in the impulsive motion of a flat plate
Abbreviated Journal Title
Commun. Nonlinear Sci. Numer. Simul.
Keywords
Second-order fluid; Third-order partial differential equation; Exact; solution; Numerical solution; PLANE WALL; FLUID; Mathematics, Applied; Mathematics, Interdisciplinary Applications; Mechanics; Physics, Fluids & Plasmas; Physics, Mathematical
Abstract
We obtain numerical solutions to a class of third-order partial differential equations arising in the impulsive motion of a flat plate for various boundary data. In particular, We Study the case of constant acceleration of the plate, the case of oscillation of the plate and a case in, which velocity is increasing yet acceleration is decreasing. We compare the numerical Solutions With the known exact Solutions in order to establish the validity of the method. Several figures illustrating both solution forms and the relative strength of the second and third-order terms are presented. The results obtained in this study reveal many interesting behaviors that warrant further study on the non-Newtonian fluid flow phenomena. (C) 2008 Elsevier B.V. All rights reserved.
Journal Title
Communications in Nonlinear Science and Numerical Simulation
Volume
14
Issue/Number
6
Publication Date
1-1-2009
Document Type
Article
Language
English
First Page
2629
Last Page
2636
WOS Identifier
ISSN
1007-5704
Recommended Citation
"Third-order partial differential equations arising in the impulsive motion of a flat plate" (2009). Faculty Bibliography 2000s. 2251.
https://stars.library.ucf.edu/facultybib2000/2251
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu