Title
Water Deficient Environment Accelerates Proton Exchange: Acetone-Water Reaction Catalyzed by Calix 4 hydroquinone Nanotubes
Abbreviated Journal Title
J. Phys. Chem. C
Keywords
ORGANIC NANOTUBES; ELECTRONIC-STRUCTURE; WAVE-FUNCTIONS; BASIS-SETS; GAS-PHASE; HYDROGEN; ENERGIES; ENOL; NMR; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, ; Multidisciplinary
Abstract
Calix[4]hydroquinone nanotubes possess the unique property to catalyze proton exchange between water and acetone. Since concerted proton transfer mechanisms could be excluded previously, stepwise proton transfer via ionic intermediates created by predissociation of CHQ OH groups is studied using state-of-the-art quantum chemical methodology. In fact, the presence of charged species, protonated acetone or deprotonated hydroquinone, leads to a substantial decrease of the proton transfer energy barrier and to calculated reaction rates that provide an explanation for the experimentally observed proton exchange. Furthermore, our quantum chemical investigation demonstrates that the catalytic activity of CHQ aggregates is not based on a reduction of the energy barrier connected with proton transfer but on the desolvation of acetone and prevention of solvent water cluster formation.
Journal Title
Journal of Physical Chemistry C
Volume
113
Issue/Number
24
Publication Date
1-1-2009
Document Type
Article
DOI Link
Language
English
First Page
10395
Last Page
10401
WOS Identifier
ISSN
1932-7447
Recommended Citation
"Water Deficient Environment Accelerates Proton Exchange: Acetone-Water Reaction Catalyzed by Calix 4 hydroquinone Nanotubes" (2009). Faculty Bibliography 2000s. 2372.
https://stars.library.ucf.edu/facultybib2000/2372