Title
Extinction of laminar counterflow diffusion flames of CH4 and C3H8 fuels with inert jet impingement
Abbreviated Journal Title
Combust. Sci. Technol.
Keywords
counterflow diffusion flame; flame stabilization; extinction; local; extinction; impingement; PREMIXED TURBULENT COMBUSTION; LEWIS NUMBER; TRIPLE FLAME; DYNAMICS; FIELD; AIR; Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary; Engineering, Chemical
Abstract
Experimental results of Nz-diluted counterflow diffusion flames of CH4 and C3H8 vs. air with local extinction are reported. The local extinction was caused by inert jet impingement on flames at selected locations either from the fuel or oxidizer side of the reaction zone. This was done to simulate how local extinction affects flame extinction over a larger flame area. The results are: (1) Local extinction of both CH4 and C3H8 flames occurs at a lower strain rate when the inert jet impingement originates from the airside. (2) The global extinction strain rate for CH4 flames is insensitive to the location and number (one vs. three) of local extinction sites. (3) For C3H8 flames, One single inert jet impinging from the airside along the centerline is more effective in causing global extinction than three inert jets impinging at regions away from the centerline. This suggests that flame extinction over a larger area may depend on strategically selected smaller local extinction sites. Furthermore, since similar results of (3) are not observed in this study for CH4 flames, fuel chemistry may also play a role in the effectiveness of local extinction transitioning to global extinction. Differences between flame stabilization mechanisms with and without local extinction are discussed and the implications for turbulent diffusion flames are outlined.
Journal Title
Combustion Science and Technology
Volume
160
Publication Date
1-1-2000
Document Type
Article
Language
English
First Page
103
Last Page
118
WOS Identifier
ISSN
0010-2202
Recommended Citation
"Extinction of laminar counterflow diffusion flames of CH4 and C3H8 fuels with inert jet impingement" (2000). Faculty Bibliography 2000s. 2461.
https://stars.library.ucf.edu/facultybib2000/2461
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu