Title
Efficient and cost-effective techniques for browsing and indexing large video databases
Abbreviated Journal Title
Sigmod Rec.
Keywords
shot detection; video indexing; video browsing; video similarity model; video retrieval; Computer Science, Information Systems; Computer Science, Software; Engineering
Abstract
We present in this paper a fully automatic content-based approach to organizing and indexing video data. Our methodology involves three steps: Step 1: We segment each video into shots using a Camera-Tracking technique. This process also extracts the feature vector for each shot, which consists of two statistical variances Var(BA) and Var(OA). These values capture how much things are changing in the background and foreground areas of the video shot. Step 2: For each video, We apply a fully automatic method to build a browsing hierarchy using the shots identified in Step 1. Step 3: Using the Var(BA) and Var(OA) values obtained in Step 1, we build an index table to support a variance-based video similarity model. That is, video scenes/shots are retrieved based on given values of Var(BA) and Var(OA) The above three inter-related techniques offer an integrated framework for modeling, browsing, and searching large video databases. Our experimental results indicate that they have many advantages over existing methods.
Journal Title
Sigmod Record
Volume
29
Issue/Number
2
Publication Date
1-1-2000
Document Type
Article; Proceedings Paper
Language
English
First Page
415
Last Page
426
WOS Identifier
ISSN
0163-5808
Recommended Citation
"Efficient and cost-effective techniques for browsing and indexing large video databases" (2000). Faculty Bibliography 2000s. 2727.
https://stars.library.ucf.edu/facultybib2000/2727
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu