Title
Linear empirical Bayes estimation in the case of the Wishart distribution
Keywords
empirical Bayes estimation; the Wishart distribution; COVARIANCE-MATRIX; MINIMAX ESTIMATORS; MOMENTS; Statistics & Probability
Abstract
We consider independent pairs (X-1, Sigma(1)), (X-2, Sigma(2)), ..., (X-n, Sigma(n)), where each Sigma(i) is distributed according to some unknown density function g(Sigma) and, given Sigma(i) = Sigma, X-i has a conditional density function q(x\Sigma) of the Wishart type. In each pair, the first component is observable but the second is not. After the (n + 1)-th observation Xn+1 is obtained, the objective is to estimate Sigma(n+1) corresponding to Xn+1. This estimator is called an empirical Bayes (EB) estimator of Sigma. We construct a linear EB estimator of Sigma and examine its precision.
Journal Title
Communications in Statistics-Theory and Methods
Volume
29
Issue/Number
8
Publication Date
1-1-2000
Document Type
Article
Language
English
First Page
1787
Last Page
1799
WOS Identifier
ISSN
0361-0926
Recommended Citation
"Linear empirical Bayes estimation in the case of the Wishart distribution" (2000). Faculty Bibliography 2000s. 2739.
https://stars.library.ucf.edu/facultybib2000/2739
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu