Abbreviated Journal Title
Opt. Eng.
Keywords
aplanatic; grazing incidence; Wolter type I; x-ray telescopes; SXI; GOES; PERFORMANCE; ABERRATION; Optics
Abstract
It is well known that normal-incidence aplanatic telescope designs perform better at small field angles than ones corrected only for spherical aberration. This is why most large astronomical telescopes fabricated in the past fifty years have been of the Ritchey-Chretien (aplanatic) design rather than of the classical Cassegrain design. For the relatively new field of x-ray astronomy, the Welter type I grazing incidence design has been extensively utilized. It consists of a paraboloidal primary mirror coaxial with a confocal hyperboloidal secondary mirror. Aplanatic versions of the Welter type I grazing incidence x-ray telescope have been discussed in detail in the literature, and are widely touted as being superior designs. However, scattering effects from residual optical fabrication errors and other practical engineering error sources prevent these grazing-incidence telescopes from being near diffraction-limited (even on axis) at the very short operational x-ray wavelengths. A systems engineering analysis of these error sources indicates that they will dominate coma at the small field angles, and of course astigmatism, field curvature, and higher-order aberrations dominate coma at the large field angles. Hence, there is little improvement in performance when going to an aplanatic design. Comparison of performance predictions for the classical versus aplanatic Welter type I x-ray telescope are presented for the special case of the Solar X-Ray Imager (SXI) baseline design. SXI is expected to become a standard subsystem aboard the next generation of NOAA/GOES weather satellites.
Journal Title
Optical Engineering
Volume
39
Issue/Number
6
Publication Date
1-1-2000
Document Type
Article
DOI Link
Language
English
First Page
1677
Last Page
1691
WOS Identifier
ISSN
0091-3286
Recommended Citation
Thompson, Patrick L. and Harvey, James E., "Systems engineering analysis of aplanatic Wolter type I x-ray telescopes" (2000). Faculty Bibliography 2000s. 2825.
https://stars.library.ucf.edu/facultybib2000/2825
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu