Title
Large nonlinear refraction in InSb at 10 mu m and the effects of Auger recombination
Abbreviated Journal Title
J. Opt. Soc. Am. B-Opt. Phys.
Keywords
DIRECT-GAP SEMICONDUCTORS; 2-PHOTON ABSORPTION; OVERLAP INTEGRALS; BAND-STRUCTURE; DEPENDENCE; RATES; GAAS; TRANSITIONS; DISPERSION; CRYSTAL; Optics
Abstract
Narrow bandgap semiconductors exhibit very large optical nonlinearities in the infrared owing to large two-photon absorption that scales as the inverse cube of the bandgap energy and the large losses and refraction from two-photon generated free carriers. Except for extremely short pulses, the free-carrier effects dominate the nonlinear losses and nonlinear refraction. Here we develop a method for the calculation of the free-electron refraction cross section in InSb. We also calculate the Auger recombination coefficient in InSb and find it to be in good agreement with existing experimental data. In all the calculations we rely on Fermi-Dirac statistics and use a four-band k.p theory for band structure calculations. Experiments on the transmission of submicrosecond CO2 laser pulses through InSb produce results consistent with the calculated parameters. (c) 2008 Optical Society of America.
Journal Title
Journal of the Optical Society of America B-Optical Physics
Volume
25
Issue/Number
2
Publication Date
1-1-2008
Document Type
Article
Language
English
First Page
223
Last Page
235
WOS Identifier
ISSN
0740-3224
Recommended Citation
"Large nonlinear refraction in InSb at 10 mu m and the effects of Auger recombination" (2008). Faculty Bibliography 2000s. 291.
https://stars.library.ucf.edu/facultybib2000/291
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu