Title
Solitons in coupled Ablowitz-Ladik chains
Abbreviated Journal Title
Phys. Lett. A
Keywords
NONLINEAR FIBER COUPLERS; WAVE-GUIDES; DISCRETE; Physics, Multidisciplinary
Abstract
A model of two coupled Ablowitz-Ladik (AL) lattices is introduced. While the system as a whole is not integrable, it admits reduction to the integrable AL model for symmetric states. Stability and evolution of symmetric solitons are studied in detail analytically (by means of a variational approximation) and numerically. It is found that there exists a finite interval of positive values of the coupling constant in which the symmetric soliton is stable, provided that its mass is below a threshold value. Evolution of the unstable symmetric soliton is further studied by means of direct simulations. It is found that the unstable soliton breaks up and decays into radiation, or splits into two counter-propagating asymmetric solitons, or evolves into an asymmetric pulse, depending on the coupling coefficient and the mass of the initial soliton. (C) 2002 Elsevier Science B.V. All rights reserved.
Journal Title
Physics Letters A
Volume
302
Issue/Number
4
Publication Date
1-1-2002
Document Type
Article
Language
English
First Page
163
Last Page
170
WOS Identifier
ISSN
0375-9601
Recommended Citation
"Solitons in coupled Ablowitz-Ladik chains" (2002). Faculty Bibliography 2000s. 3343.
https://stars.library.ucf.edu/facultybib2000/3343
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu