Title
Locally adaptive wavelet empirical Bayes estimation of a location parameter
Abbreviated Journal Title
Ann. Inst. Stat. Math.
Keywords
empirical Bayes estimation; adaptive estimation; wavelet; posterior and; prior risks; DENSITY-ESTIMATION; CURVE ESTIMATION; ERROR; RATES; Statistics & Probability
Abstract
The traditional empirical Bayes (EB) model is considered with the parameter being a location parameter, in the situation when the Bayes estimator has a finite degree of smoothness and, possibly, jump discontinuities at several points. A nonlinear wavelet EB estimator based on wavelets with bounded supports is constructed, and it is shown that a finite number of jump discontinuities in the Bayes estimator do not affect the rate of convergence of the prior risk of the EB estimator to zero. It is also demonstrated that the estimator adjusts to the degree of smoothness of the Bayes estimator, locally, so that outside the neighborhoods of the points of discontinuities, the posterior risk has a high rate of convergence to zero. Hence, the technique suggested in the paper provides estimators which are significantly superior in several respects to those constructed earlier.
Journal Title
Annals of the Institute of Statistical Mathematics
Volume
54
Issue/Number
1
Publication Date
1-1-2002
Document Type
Article
Language
English
First Page
83
Last Page
99
WOS Identifier
ISSN
0020-3157
Recommended Citation
"Locally adaptive wavelet empirical Bayes estimation of a location parameter" (2002). Faculty Bibliography 2000s. 3397.
https://stars.library.ucf.edu/facultybib2000/3397
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu