Title
High-performance iterative Viterbi algorithm for conventional serial concatenated codes
Abbreviated Journal Title
IEEE Trans. Inf. Theory
Keywords
bootstrap decoding; iterative decoding; serial concatenated systems; (SCC); turbo decoding; Viterbi algorithm (VA); PARITY-CHECK CODES; CONVOLUTIONAL-CODES; ORDERED STATISTICS; TURBO-CODES; BLOCK; DECODER; DESIGN; GRAPHS; Computer Science, Information Systems; Engineering, Electrical &; Electronic
Abstract
The Viterbi algorithm (VA) and conventional serial concatenated codes (CSCC) have been widely applied in digital communication systems over the last 30 years. In this paper, we show that the Shannon capacity of additive white Gaussian noise (AWGN) channels can be approached by CSCCs and the iterative VA (IVA). We firstly study the algebraic properties of CSCCs. We then present the IVA to decode these codes. We also analyze the performance of the IVA and conclude that a better performance can be achieved if we replace the powerful block codes by some simple parity codes. One of the key results in this paper shows that by using a proper design for the decoding method, codes with small loops can be very efficiently decoded using a min-sum type algorithm. The numerical results show that the IVA can closely approach the Shannon sphere-packing lower bound and the Shannon limit. For block sizes ranging from 56 information bits to 11970 information bits, the IVA can perform to within about 1 dB of the Shannon sphere-packing lower bound at a block error rate of 10(-4). We show that the IVA has very low complexity and can be applied to many current standard systems, for example, the Qualcomm code-division multiple-access (CDMA) system and the NASA concatenated system, with very little modification or, for some cases, without any modification.
Journal Title
Ieee Transactions on Information Theory
Volume
48
Issue/Number
7
Publication Date
1-1-2002
Document Type
Article
Language
English
First Page
1759
Last Page
1771
WOS Identifier
ISSN
0018-9448
Recommended Citation
"High-performance iterative Viterbi algorithm for conventional serial concatenated codes" (2002). Faculty Bibliography 2000s. 3542.
https://stars.library.ucf.edu/facultybib2000/3542
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu