Title
Configuration analysis of two-vehicle rear-end crashes
Keywords
VEHICLE; MODEL; Engineering, Civil; Transportation Science & Technology
Abstract
Light truck vehicles (LTVs), including light-duty trucks, vans, minivans, and sport-utility vehicles, are generally larger than common passenger cars and are able to take on additional tasks. LTVS usually ride higher than other common passenger cars, which likely affects the visibility of passenger car drivers. The role of LTVs in rear-end crashes was investigated. The use of statistical models of unordered multiple categories was attempted, including multinomial logit (MNL), heteroscedastic extreme value (HEV), and bivariate probit (BVP) models. Four different rear-end crash configurations (lead and following vehicles) were defined on the basis of the type of the two vehicles involved (LTV or regular passenger car). General Estimates System (GES 2000) traffic crash data were used to calibrate the three suggested models (the MNL, HEV, and BVP models). Modeling results showed that there are sight distance and discomfort problems when a driver in a regular passenger car is driving behind an LTV. The probability of a rear-end crash involving a regular passenger car striking an LTV increases when the driver of the following vehicle is distracted. The analysis also illustrates that the probability of a regular car striking an LTV increases when the driver of the following vehicle has an obscured view.
Journal Title
Statistical Methods and Modeling and Safety Data, Analysis, and Evaluation: Safety and Human Performance
Issue/Number
1840
Publication Date
1-1-2003
Document Type
Article
Language
English
First Page
140
Last Page
147
WOS Identifier
ISSN
0361-1981; 0-309-08581-0
Recommended Citation
"Configuration analysis of two-vehicle rear-end crashes" (2003). Faculty Bibliography 2000s. 3580.
https://stars.library.ucf.edu/facultybib2000/3580
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu