Title

Reaction-based modeling of quinone-mediated bacterial iron(III) reduction

Authors

Authors

W. D. Burgos; Y. L. Fang; R. A. Royer; G. T. Yeh; J. J. Stone; B. H. Jeon;B. A. Dempsey

Comments

Authors: contact us about adding a copy of your work at STARS@ucf.edu

Abbreviated Journal Title

Geochim. Cosmochim. Acta

Keywords

MICROBIAL REDUCTION; FERROUS IRON; SHEWANELLA-PUTREFACIENS; DISSIMILATORY REDUCTION; OXIDES; GROUNDWATER; SUSPENSIONS; KINETICS; SYSTEMS; FE(II); Geochemistry & Geophysics

Abstract

This paper presents and validates a new paradigm for modeling complex biogeochemical systems using a diagonalized reaction-based approach. The bioreduction kinetics of hematite (alpha-Fe2O3) by the dissimilatory metal-reducing bacterium (DMRB) Shewanella putrefaciens strain CN32 in the presence of the soluble electron shuttling compound anthraquinone-2,6-disulfonate (AQDS) is used for presentation/validation purposes. Experiments were conducted under nongrowth conditions with H-2 as the electron donor. In the presence of AQDS, both direct biological reduction and indirect chemical reduction of hematite by bioreduced anthrahydroquinone-2,6-disulfonate (AH(2)DS) can produce Fe(II). Separate experiments were performed to describe the bioreduction of hematite, bioreduction of AQDS, chemical reduction of hematite by AH(2)DS, Fe(II) sorption to hematite, and Fe(II) biosorption to DMRB. The independently determined rate parameters and equilibrium constants were then used to simulate the parallel kinetic reactions of Fe(II) production in the hematite-with-AQDS experiments. Previously determined rate formulations/parameters for the bioreduction of hematite and Fe(II) sorption to hematite were systematically tested by conducting experiments with different initial conditions. As a result, the rate formulation/parameter for hematite bioreduction was not modified, but the rate parameters for Fe(11) sorption to hematite were modified slightly. The hematite bioreduction rate formulation was first-order with respect to hematite "free" surface sites and zero-order with respect to DMRB based on experiments conducted with variable concentrations of hematite and DMRB. The AQDS bioreduction rate formulation was first-order with respect to AQDS and first-order with respect to DMRB based on experiments conducted with variable concentrations of AQDS and DMRB. The chemical reduction of hematite by AH(2)DS was fast and considered to be an equilibrium reaction. The simulations of hematite-with-AQDS experiments were very sensitive to the equilibrium constant for the hematite-AH(2)DS reaction. The model simulated the hematite-with-AQDS experiments well if it was assumed that the ferric oxide "surface" phase was more disordered than pure hematite. This is the first reported study where a diagonalized reaction-based model was used to simulate parallel kinetic reactions based on rate formulations/ parameters independently obtained from segregated experiments. Copyright (C) 2003 Elsevier Ltd.

Journal Title

Geochimica Et Cosmochimica Acta

Volume

67

Issue/Number

15

Publication Date

1-1-2003

Document Type

Article

Language

English

First Page

2735

Last Page

2748

WOS Identifier

WOS:000183482400004

ISSN

0016-7037

Share

COinS