Title
Ambient vibration data analysis for structural identification and global condition assessment
Abbreviated Journal Title
J. Eng. Mech.-ASCE
Keywords
structural dynamics; vibration; impact tests; modal analysis; damage; assessment; flexibility; EIGENSYSTEM REALIZATION-ALGORITHM; ASCE BENCHMARK PROBLEM; SYSTEM-IDENTIFICATION; MODAL-ANALYSIS; PARAMETER-ESTIMATION; TALL; BUILDINGS; PHASE-I; BRIDGE; Engineering, Mechanical
Abstract
System identification is an area which deals with developing mathematical models to characterize the input-output behavior of an unknown system by means of experimental data. Structural health monitoring (SHM) provides the tools and technologies to collect and analyze input and output data to track the structural behavior. One of the most commonly used SHM technologies is dynamic testing. Ambient vibration testing is a practical dynamic testing method especially for large civil structures where input excitation cannot be directly measured. This paper presents a conceptual and reliable methodology for system identification and structural condition assessment using ambient vibration data where input data are not available. The system identification methodology presented in this study is based on the use of complex mode indicator functions (CMIFs) coupled with the random decrement (RD) method to identify the modal parameters from the output only data sets. CMIF is employed for parameter identification from the unscaled multiple-input multiple-output data sets generated using the RD method. For condition assessment, unscaled flexibility and the deflection profiles obtained from the dynamic tests are presented as a conceptual indicator. Laboratory tests on a steel grid and field tests on a long-span bridge were conducted and the dynamic properties identified from these tests are presented. For demonstrating condition assessment, deflected shapes obtained from unscaled flexibility are compared for undamaged and damaged laboratory grid structures. It is shown that structural changes on the steel grid structure are identified by using the unscaled deflected shapes.
Journal Title
Journal of Engineering Mechanics-Asce
Volume
134
Issue/Number
8
Publication Date
1-1-2008
Document Type
Article
Language
English
First Page
650
Last Page
662
WOS Identifier
ISSN
0733-9399
Recommended Citation
"Ambient vibration data analysis for structural identification and global condition assessment" (2008). Faculty Bibliography 2000s. 409.
https://stars.library.ucf.edu/facultybib2000/409
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu