Title
Surface structure and topology in surface stabilized Co-nanoparticles with a thin Al2O3 amorphous layer
Abbreviated Journal Title
Appl. Surf. Sci.
Keywords
surface topology; phase transformation; surface modified; co-nanoparticles; nanocermets; XPS analysis; microstructure; X-ray; diffraction; MAGNETIC-PROPERTIES; ENCAPSULATED NANOPARTICLES; PARTICLES; CLUSTERS; TRANSFORMATIONS; MICROSTRUCTURE; TRANSITION; JUNCTIONS; GROWTH; FCC; Chemistry, Physical; Materials Science, Coatings & Films; Physics, ; Applied; Physics, Condensed Matter
Abstract
Heating an amorphous Co2+ :AlO(OH).alphaH(2)O gel under a reducing atmosphere of pure gas at 700-850 degreesC temperature results in surface stabilized Co-metal nanoparticles with a thin Al2O3 ceramic surface layer. At early temperatures during heating, the gel decomposes and disperses in a refined structure in divided Co2+ groups through a matrix of Al2O3 (amorphous). A reconstructive Co2+ + H-2 -- > Co + 2H(+) reaction operates in the divided groups to result in isolated Co-particles. Formation and existence of Al2O3 layer (in a limited thickness t less than or equal to R-0, with R-0 similar to 4.28 nm the critical Al2O3 dimension to grow as a stable crystallite) over growing Co-particles control the process in a high-energy metastable fee or bee Co allotrope structure. Average crystallite size thus hardly grows to be as big as 41 nm. A large value of surface energy sigma = 0.790 J/m(2) in Al2O3, in comparison to 0.234 J/m(2) in fee or 0.279 J/m(2) in hcp Co, inhibits a moderate diffusion of surface atoms and in turn controls the nucleation and growth in small Co-particles. Otherwise, a particle of pure Co metal grows rapidly in the hcp bulk structure. The results of the Al2O3 surface modified fee and bcc Co are analyzed with X-ray photoelectron spectroscopy in correlation of X-ray diffraction and microstructure. (C) 2004 Published by Elsevier B.V.
Journal Title
Applied Surface Science
Volume
236
Issue/Number
1-4
Publication Date
1-1-2004
Document Type
Article
Language
English
First Page
141
Last Page
154
WOS Identifier
ISSN
0169-4332
Recommended Citation
"Surface structure and topology in surface stabilized Co-nanoparticles with a thin Al2O3 amorphous layer" (2004). Faculty Bibliography 2000s. 4726.
https://stars.library.ucf.edu/facultybib2000/4726
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu