Title
Fully three-dimensional modeling of the fabrication and behavior of photonic crystals formed by holographic lithography
Abbreviated Journal Title
J. Opt. Soc. Am. A-Opt. Image Sci. Vis.
Keywords
4 NONCOPLANAR BEAMS; EXPERIMENTAL-VERIFICATION; INTERFERENCE; LITHOGRAPHY; BANDGAP STRUCTURES; FDTD ALGORITHM; WAVE-GUIDES; SIMULATION; EXPOSURE; BENDS; MICROSTRUCTURES; Optics
Abstract
A comprehensive and fully three-dimensional model of holographic lithography is used to predict more rigorously the geometry and transmission spectra of photonic crystals formed in Epon(R) SU-8 photoresist. It is the first effort known to the authors to incorporate physics of exposure, postexposure baking, and developing into three-dimensional models of photonic crystals. Optical absorption, reflections, standing waves, refraction, beam coherence, acid diffusion, resist shrinkage, and developing effects combine to distort lattices from their ideal geometry. These are completely neglected by intensity-threshold methods used throughout the literature to predict lattices. Numerical simulations compare remarkably well with experimental results for a face-centered-cube (FCC) photonic crystal. Absorption is shown to produce chirped lattices with broadened bandgaps. Reflections are shown to significantly alter lattice geometry and reduce image contrast. Through simulation, a diamond lattice is formed by multiple exposures, and a hybrid trigonal-FCC lattice is formed that exhibits properties of both component lattices. (C) 2004 Optical Society of America.
Journal Title
Journal of the Optical Society of America a-Optics Image Science and Vision
Volume
21
Issue/Number
9
Publication Date
1-1-2004
Document Type
Article
Language
English
First Page
1703
Last Page
1713
WOS Identifier
ISSN
1084-7529
Recommended Citation
"Fully three-dimensional modeling of the fabrication and behavior of photonic crystals formed by holographic lithography" (2004). Faculty Bibliography 2000s. 4759.
https://stars.library.ucf.edu/facultybib2000/4759
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu