Title

Fully three-dimensional modeling of the fabrication and behavior of photonic crystals formed by holographic lithography

Authors

Authors

R. C. Rumpf;E. G. Johnson

Comments

Authors: contact us about adding a copy of your work at STARS@ucf.edu

Abbreviated Journal Title

J. Opt. Soc. Am. A-Opt. Image Sci. Vis.

Keywords

4 NONCOPLANAR BEAMS; EXPERIMENTAL-VERIFICATION; INTERFERENCE; LITHOGRAPHY; BANDGAP STRUCTURES; FDTD ALGORITHM; WAVE-GUIDES; SIMULATION; EXPOSURE; BENDS; MICROSTRUCTURES; Optics

Abstract

A comprehensive and fully three-dimensional model of holographic lithography is used to predict more rigorously the geometry and transmission spectra of photonic crystals formed in Epon(R) SU-8 photoresist. It is the first effort known to the authors to incorporate physics of exposure, postexposure baking, and developing into three-dimensional models of photonic crystals. Optical absorption, reflections, standing waves, refraction, beam coherence, acid diffusion, resist shrinkage, and developing effects combine to distort lattices from their ideal geometry. These are completely neglected by intensity-threshold methods used throughout the literature to predict lattices. Numerical simulations compare remarkably well with experimental results for a face-centered-cube (FCC) photonic crystal. Absorption is shown to produce chirped lattices with broadened bandgaps. Reflections are shown to significantly alter lattice geometry and reduce image contrast. Through simulation, a diamond lattice is formed by multiple exposures, and a hybrid trigonal-FCC lattice is formed that exhibits properties of both component lattices. (C) 2004 Optical Society of America.

Journal Title

Journal of the Optical Society of America a-Optics Image Science and Vision

Volume

21

Issue/Number

9

Publication Date

1-1-2004

Document Type

Article

Language

English

First Page

1703

Last Page

1713

WOS Identifier

WOS:000223479400013

ISSN

1084-7529

Share

COinS