Title
Convolution, average sampling, and a calderon resolution of the identity for shift-invariant spaces
Abbreviated Journal Title
J. Fourier Anal. Appl.
Keywords
irregular sampling; Calderon resolution; frames; wavelets; amalgam; spaces; RECONSTRUCTION; SUBSPACES; THEOREMS; FRAMES; Mathematics, Applied
Abstract
In this article, we study three interconnected inverse problems in shift invariant spaces: 1) the convolution/deconvolution problem; 2) the uniformly sampled convolution and the reconstruction problem; 3) the sampled convolution followed by sampling on irregular grid and the reconstruction problem. In all three cases, we study both the stable reconstruction as well as ill-posed reconstruction problems. We characterize the convolutors for stable deconvolution as well as those giving rise to ill-posed deconvolution. We also characterize the convolutors that allow stable reconstruction as well as those giving rise to ill-posed reconstruction from uniform sampling. The connection between stable deconvolution, and stable reconstruction from samples after convolution is subtle, as will be demonstrated by several examples and theorems that relate the two problems.
Journal Title
Journal of Fourier Analysis and Applications
Volume
11
Issue/Number
2
Publication Date
1-1-2005
Document Type
Article
Language
English
First Page
215
Last Page
244
WOS Identifier
ISSN
1069-5869
Recommended Citation
"Convolution, average sampling, and a calderon resolution of the identity for shift-invariant spaces" (2005). Faculty Bibliography 2000s. 4956.
https://stars.library.ucf.edu/facultybib2000/4956
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu